An explicit construction of the Quillen homotopical category of dg Lie algebras

نویسنده

  • Boris Shoikhet
چکیده

Let g1 and g2 be two dg Lie algebras, then it is well-known that the L∞ morphisms from g1 to g2 are in 1 − 1 correspondence to the solutions of the Maurer-Cartan equation in some dg Lie algebra k(g1, g2). Then the gauge action by exponents of the zero degree component k(g1, g2) 0 on MC ⊂ k(g1, g2) 1 gives an explicit ”homotopy relation” between two L∞ morphisms. We prove that the quotient category by this relation (that is, the category whose objects are L∞ algebras and morphisms are L∞ morphisms modulo the gauge relation) is well-defined, and is a localization of the category of dg Lie algebras and dg Lie maps by quasi-isomorphisms. As localization is unique up to an equivalence, it is equivalent to the Quillen-Hinich homotopical category of dg Lie algebras [Q1,2], [H1,2]. Moreover, we prove that the Quillen’s concept of a homotopy coincides with ours. The last result was conjectured by V.Dolgushev [D].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bar Derived Category of a Curved Dg Algebra

Curved A∞-algebras appear in nature as deformations of dg algebras. We develop the basic theory of curved A∞-algebras and, in particular, curved dg algebras. We investigate their link with a suitable class of dg coalgebras via the bar construction and produce Quillen model structures on their module categories. We define the analogue of the relative derived category for a curved dg algebra.

متن کامل

Domenico Fiorenza And

We show that the mapping cone of a morphism of differential graded Lie algebras χ : L → M can be canonically endowed with an L∞-algebra structure which at the same time lifts the Lie algebra structure on L and the usual differential on the mapping cone. Moreover, this structure is unique up to isomorphisms of L∞-algebras. The associated deformation functor coincides with the one introduced by t...

متن کامل

Quillen Spectral Sequences in Homology and Rational Homotopy of Cofibrations

We construct Quillen type spectral sequences in homology and rational homotopy for coobration sequences which are Eckmann-Hilton dual to analogous ones for bration sequences. These spectral sequences are constructed by direct ltrations of the Adams cobar construction. We also prove various collapsing theorems generalizing results of Clark and Smith in the case of a wedge of 1-connected nicely p...

متن کامل

Deformation of Singularities via L∞-Algebras

This is an addendum to the paper “Deformation of L∞-Algebras” [9]. We explain in which way the deformation theory of L∞-algebras extends the deformation theory of singularities. We show that the construction of semi-universal deformations of L∞-algebras gives explicit formal semiuniversal deformations of isolated singularities. Introduction In this paper, we apply the following general idea for...

متن کامل

Realization of locally extended affine Lie algebras of type $A_1$

Locally extended affine Lie algebras were introduced by Morita and Yoshii in [J. Algebra 301(1) (2006), 59-81] as a natural generalization of extended affine Lie algebras. After that, various generalizations of these Lie algebras have been investigated by others. It is known that a locally extended affine Lie algebra can be recovered from its centerless core, i.e., the ideal generated by weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008